Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus.

نویسندگان

  • S A Chow
  • K A Vincent
  • V Ellison
  • P O Brown
چکیده

In retroviral integration, the viral integration protein (integrase) mediates a concerted DNA cleavage-ligation reaction in which the target DNA is cleaved and the resulting 5' ends of target DNA are joined to the 3' ends of viral DNA. Through an oligonucleotide substrate that mimics the recombination intermediate formed by this initial cleavage-ligation reaction, the purified integrase of human immunodeficiency virus was shown to promote the same reaction in reverse, a process called disintegration. Analysis of a set of structurally related substrates showed that integrase could promote a range of DNA cleavage-ligation reactions. When the viral DNA component of the disintegration substrate was single-stranded, integrase could mediate a DNA splicing reaction analogous to RNA splicing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex.

The virally encoded integrase protein carries out retroviral integration, which requires specific interactions with the two ends of the viral DNA, and also with host DNA that is the target of integration. We attached a photo-cross-linking agent to specific viral and target DNA sites to identify regions of the integrase polypeptide that are in close proximity to those substrate features in the a...

متن کامل

Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: definition of permissive and nonpermissive T-cell lines.

Functional retroviral integrase protein is thought to be essential for productive viral replication. Yet, previous studies differed on the extent to which integrase mutant viruses expressed human immunodeficiency virus type 1 (HIV-1) genes from unintegrated DNA. Although one reason for this difference was that class II integrase mutations pleiotropically affected the viral life cycle, another r...

متن کامل

Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites.

Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retrovi...

متن کامل

Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences.

Certain retrovirus and retrotransposons display strong biases in the selection of host DNA sites for integration. To probe the possibility that simple tethering of the retroelement integrase protein to a target DNA site is sufficient to direct integration, the activities of a hybrid composed of human immunodeficiency virus 1 integrase and lambda repressor were analyzed. In in vitro reactions co...

متن کامل

Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection.

The viral integrase (IN) protein is the only viral protein known to be required for integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host cell DNA, a step in the viral life cycle that is essential for viral replication. To better understand the relationship between in vitro IN activity and IN-mediated integration of viral DNA in an infected cell, we characterized t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 255 5045  شماره 

صفحات  -

تاریخ انتشار 1992